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With the aid of kinetic theory, a solution is obtained for the problem
of one~dimensional dispersion into vacuum of charged particles that

at an initial moment of time are concentrated in the plane x = 0. The
problem is solved in the approximation of collisionless equations with
allowance for a self-consistent electric field,

A unique asymptotic expression for one-dimensional dispersion is ob-
tained. The relation between the dispersion problem of a charged gas
layer and expansion from a point is demonstrated,

§1. At time t = 0 let N particles of like charge be
concentrated in a plane x = 0; these particles possess
a given velocity distribution function f = f)6(x),
where 4 (x) is the Dirac delta function normalized by
the condition [ (x)dx = 1, in the case where the do-
main of integration includes the origin of coordinates. *

The specific form of the fj(u) function should be
determined from considerations associated with the
actual physical problem which, by way of abstraction,
leads to the problem of expansion from a point. The
motion of charged particles which, at t> 0, begin to
disperse freely into vacuum will be described by a
scheme of collisionless particle motion in a self-con-
sistent electric field,

Vlasov's system of equations, conventionally used
to study such motions, has the form
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where f is the distribution function of the particles,

E is the electric-field intensity, € is the charge of a
particle, m is the mass of a particle, u is the veloc-
ity of a particle, t is time, and x is g Cartesian coor-
dinate. External electric and magnetic fields are ab-
sent, Beyond the region of dispersion under study, at
a sufficiently large distance from the origin of the co-
ordinates, charges of unlike sign may always be dis-
tributed symmetrically, because such a distribution
does not affect particle motion, On reaching a region
of opposite charge, the dispersing particles are neu-
tralized,

The system of equations (1.1) is essentially a non~
linear one, so that it is difficult to obtain a solution
of the given problem directly from this system of equa-
tions. In the following, we shall use a different ap-
proach to the solution of the problem, in which the

*With respect to one-dimensional motions, one should
bear in mind that all quantities are referred to unit
area of the plane normal to the x axis.

solution obtained will be identical with the solution
of the system of equations (1.1):

Let us examine the equation for the electric-field
intensity
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The quantity p(t, x) is the density of the charge dis-
tributed along the x axis at time t. Because of the sym~
metry of the prohlem E(0, t) = 0, the equation (1.2)
may be written in the form

x
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Hence, it may be seen that the magnitude of the
electric~field intensity at point x is equal to the mag-
nitude of the total charge g distributed over the inter-
val [0, x], multiplied by 4,

We shall now examine an arbifrary particle which
at time t = 0 began to move from point x = 0 at veloc-
ity uy.

The displacement of the particle over a small pe-
riod of time At is defined by the formula Ax = uyAt;
hence all particles, the velocities of whichatt=0
were greater than u,;, will outdistance the particle
examined, while all particles with velocities less than
u, will lag behind, '

This particle order, depending on initial velocities,
will remain unchanged. )

Indeed, the particles situated ahead of the particle
examined possess velocities higher than u;, so that
their motion will be accelerated by an electric field
of higher intengity, since the total charge q behind
them will be greater than the total charge behind the
particle examined; they will, therefore, continue to
outdistance the particles with an initial velocity u,.

For the same reason, the particles with an initial
velocity less than uy will not be able to overtake the
particle examined.

This means that behind a particle with initial ve-
locity u, will be a constant number of particles, so
that the electric-field intensity to which this particle
is exposed will also be a constant,

The equations of motion of the particle may be writ-
ten in the following form:

mdujdt = eE (u,) (E (uo) = const) , (1.4)

Integration of the equation (1,4) with the initial con~
dition u= g, at t = 0 yields

uz%E(uo)t—{—uo. (1.5)
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Since u = dx/dt, the equation (1.5) may be inte-
grated with the initial conditionx=0att=0

&
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(1.6)

We shall now determine the specific form of the re-
lation between the quantity E and the initial velocity of
the particle u,.

The number of particles situated behind a particle
that began its motion at the velocity u, we shall denote
by m,. The total charge of these particles is then q =
= gm,. Hence, using the relation (1.3), we may write

.
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Substituting this expression into (1.6), we obtain
the equation of motion of the particle
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Substituting the expression (1.7) for E(u,) in the
equality (1.5), we get
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The equation (1. 8) yields an implicit dependence of
u, on x and t, hence the relation (1.9) in combination
with (1, 8) yields the velocity distribution in the flow,
i,e., (1.8) and (1.9) make it possible to determine u
as a function of x and t. In combination, (1.7) and (1. 8)
make it possible to determine E as a function of x and
t.

We shall now calculate the probability density func-
tion of the particles.

The number of particles with the initial velocities
in the range (uy, Uy + Auy) is equal to AN = fj(ug)Auy.
The particles with the initial velocity v, will be situ-
ated at the moment t at the point
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Particles with an initial velocity uy + Au, will be at
time t at the point
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Correspondingly, AN particles will occupy the inter-
cept Ax = x; — x. Hence, the density of the number of
particles n at the point x at time t may be calculated
as the limit ratio of AN to Ax for Ayg tending to zero
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< The equations (1,10) and (1. 8) yicld the dependence
of n on x and t. Thus, we have determined all the mac-

roscopic dispersion characteristics. From the rela-

tion (1.9), it may be scen that at t = «, the velocity of
the gas particles becomes infinitely Jarge. The equa-
tion (1.10) indicates that at sufficiently large t, the
particle density has the asymptotic form
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which is independent of the velocity distribution of the
particles at the initial moment of time.

It should be noted that this asymptotic expression
for the density is incorrect only in the case of a smali
number of particles with initial velocities in the prox-
imity of the point u, = «, because fy(=) = 0, so that in
the expression (1.10) the first term in the denominator
becomes larger than the second. The asymptotic form,
therefore, cannot be extended up to the point x = « for
finite values of t. The asymptotic representation of the
velocity has the form u = 2x/t.

As distinet from the dispersion of charged parti-
cles, the asymptotic form of the collisionless disper-
sion of neutral particles is defined by the form of the
initial distribution function, so that the particle den-
sity decreases with time according to the 1/t law [1, 2].

It should be noted that the qualitative picture of the
problem is obvious enough even without these quanti-
tative considerations. Particles of like charge are re-
pulsed, experiencing at the same time a constant ac-
celeration, as a result of which the density decreases
according to n ~ 1/t%.

§2. We shall now examine the relation between the
problem of particle dispersion from a point, which we
have just considered, and the problem of the dispersion
of a layer of charged gas particles. The expression for
the distribution function f has the form

2kT J?

where T is the temperature of the gas layer, and ¢ is
the electric potential determined from the equation

z = 0> .
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The gas is assumed to be hot, i.e., the potential
energy acquired along the path length s is postulated
small compared to kT;. This condition may be written
in the form

gEs 4rmegs
k—TO << 1 or —k-TT << 1 .

2.1

The dispersion of a cold layer of charged gas (T =
= 0) was examined in [3] on the agsumption that there
is no thermal-velocity distribution of particles in the
gas layer.

Let the mean free path in the gas be greater than
the dimensions of the s layer.

Then, after instantaneous removal of the bounding
surfaces, the gas will disperse in a collisionless mode
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under the effect of a self-consistent electric field. The
condition (2.1) means that during the initial phase of
dispersion, the electric field does not yet substantially
affect particle motion, so that the velocity distribution
of the particles will be the same as in the case of col~
lisionless dispersion of neutral particles. Subsequent-
ly, particle motion will be appreciably influenced by
the electric field; however, the order in which they
follow one another will not change.

At a sufficiently large distance from the origin of
coordinates (Ix] > s), the dispersion of the layer will
oceur in the same fashion as the dispersion from a
point; here, the velocity distribution function of the
gas particles at the point x = 0. should be taken in the
form f = f,(u)é(x), where

oo )

= Nol{gairs) " es2 (— Fir)-

Here, N; is the number of particles in a gas layer of
thickness s. The macroscopic characteristics of the
flow may be calculated from the expressions (1.8),
(1,9), and (1.10).

REFERENCES

1. R. Narasimha, "Collisionless expansion of gas~
es into vacuum," Mekhanika [Russian translation], no,
2 (78), 1963.

2. V. P, Shidlovskii, "Problem of the dispersion
of a mass point of gas and its solution with the aid of
kinetic theory,® PMTF, no. 4, 1963,

3. V. A, Levin, "One-dimensional unsteady mo-
tion of an electrically charged gas at zero pressure,”
PMTF, no. 3, 1962.

6 July 1965 Moscow



