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ONE-DIMENSIONAL DISPERSION OF A FINITE MASS O1 �9 PARTICLES OF LIKE 
CHARGE CONCENTRATED IN A PLANE 
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With the aid of kinetic theory, a mlution is obtained for the problem 
of one-dimensional dispersion into vacuum of charged particles that 
at an initial moment of time am concentrated in the plane x = 0. The 
problem is solved in the approximation of collisionless equations with 
allowance for a self-consistent electric fieldi 
A unique asymptotic expression for one=dimensional dispersion is ob= 
tained. The relation between the dispersion problem of a charged gas 
layer and expansion from a point iS demonstrated. 

w At t i m e  t = 0 le t  N p a r t i c l e s  of  l ike  c h a r g e  be  
c o n c e n t r a t e d  in a p lane  x = 0; t h e s e  p a r t i c l e s  p o s s e s s  
a g iven v e l o c i t y  d i s t r i b u t i o n  funct ion f = f0(u)6(x), 
whe re  6 (x) i s  the Di rac  de l ta  funct ion n o r m a l i z e d  by  
the condi t ion  f 6(x)dx = 1, in the  c a s e  w h e r e  the do-  
m a i n  of i n t e g r a t i o n  inc ludes  the  o r i g i n  of  c o o r d i n a t e s .  * 

The spec i f i c  f o r m  of the  f0(u) function should be  
d e t e r m i n e d  f r o m  c o n s i d e r a t i o n s  a s s o c i a t e d  with  the  
ac tua l  p h y s i c a l  p r o b l e m  which, by  way  of a b s t r a c t i o n ,  
l e a d s  to the  p r o b l e m  of expans ion  f r o m  a point .  The 
mot ion  of  c h a r g e d  p a r t i c l e s  which,  a t  t > 0 r beg in  to 
d i s p e r s e  f r e e l y  into vacuum wi l l  be d e s c r i b e d  by  a 
s c h e m e  of  c o l l i s i o n l e s s  p a r t i c l e  mot ion  in a s e l f - c o n -  
s i s t e n t  e l e c t r i c  f i e ld .  

V l a s o v ' s  s y s t e m  of  equa t ions ,  convent iona l ly  used  
to s tudy such mot ions ,  ha s  the f o r m  

a! a/ ~ E a! ~t + u . - ~  -k  ,,~ (t, z) ~ = O, 

OEaz =4~8 I ](t' z' u) du , (1.1) 

w h e r e  f i s  the  d i s t r i b u t i o n  funct ion of the p a r t i c l e s ,  
E i s  the  e l e c t r i c - f i e l d  in tens i ty ,  e i s  the c h a r g e  of a 
p a r t i c l e ,  m is  the  m a s s  of a p a r t i c l e ,  u i s  the  v e l o c -  
i ty  of  a p a r t i c l e ,  t i s  t ime ,  and x i s  a C a r t e s i a n  c o o r '  
d ina te .  E x t e r n a l  e l e c t r i c  and m a g n e t i c  f i e lds  a r e  a b -  
sent .  Beyond the r eg ion  of  d i s p e r s i o n  under  s tudy,  a t  
a su f f i c i en t ly  l a r g e  d i s t a n c e  f r o m  the o r ig in  of the c o -  
o r d i n a t e s ,  c h a r g e s  of  un l ike  s ign  m a y  a lways  be d i s -  
t r i bu t ed  s y m m e t r i c a l l y ,  b e c a u s e  such a d i s t r i b u t i o n  
does  not a f fec t  p a r t i c l e  mot ion .  On r e a c h i n g  a r eg ion  
of  oppos i t e  cha rge ,  the  d i s p e r s i n g  p a r t i c l e s  a r e  neu-  
t r a l i z e d .  

The s y s t e m  of  equa t ions  (1.1) i s  e s s e n t i a l l y  a non-  
l i n e a r  one, so tha t  i t  i s  d i f f icul t  to obta in  a solut ion 
of  the  given p r o b l e m  d i r e c t l y  f r o m  th i s  s y s t e m  of  equa-  

t ions .  In the  following,  we sha l l  use  a d i f f e ren t  ap -  
p r o a c h  to the  so lu t ion  of the p r o b l e m ,  in which the 

*With r e s p e c t  to o n e - d i m e n s i o n a i  mot ions ,  one should 
b e a r  in mind tha t  a l l  quan t i t i e s  a r e  r e f e r r e d  to uni t  
a r e a  of the p lane  n o r m a l  to the  x ax i s .  

so lu t ion  obta ined  wi l l  :be i den t i ca l  with the so lu t ion  
of the  s y s t e m  of  equa t ions  (1.1).  

Let  us  examine  the equat ion  fo r  the e l e c t r i c - f i e l d  
i n t ens i ty  

+co +oo 

�9 ..-co - ~  

The quant i ty  p(t, x) i s  the dens i ty  of the cha rge  dis= 
t r i b u t e d  a long the x ax i s  a t  t i m e  t .  Be c a use  of the  s y m -  
m e t r y  of the  p r o b l e m  E(0, t) = 0, the  equat ion  (1.2) 
m a y  be w r i t t e n  in the f o r m  

0 

Hence,  i t  m a y  be  s e e n  tha t  the  magni tude  of  the 
e l e c t r i c - f i e l d  i n t ens i ty  at  point  x i s  equal  to the  m a g -  
ni tude of  the  to ta l  c h a r g e  q d i s t r i b u t e d  o v e r  the i n t e r -  
va l  [0, x] ,  m u l t i p l i e d  by 4r .  

We sha l l  now e xa mine  an a r b i t r a r y  p a r t i c l e  which 
at  t i m e  t = 0 began  to move  f rom poin t  x = 0 at  v e l o c -  
i ty  %. 

The d i s p l a c e m e n t  of the  p a r t i c l e  o v e r  a s m a l l  p e -  
r iod  of t i m e  At i s  def ined by  the f o r m u l a  Ax = u0At; 
hence  a l l  p a r t i c l e s ,  the  v e l o c i t i e s  of which at  t = 0 
w e r e  g r e a t e r  than  %, wi l l  ou td i s t ance  the  p a r t i c l e  
examined ,  whi le  a l l  p a r t i c l e s  w i th  v e l o c i t i e s  l e s s  than 
u 0 wi l l  l ag  behind .  

Th i s  p a r t i c l e  o r d e r ,  depending on in i t i a l  v e l o c i t i e s ,  
wi l l  r e m a i n  unchanged.  

Indeed,  the  p a r t i c l e s  s i tua ted  ahead of  the p a r t i c l e  
examined  p o s s e s s  v e l o c i t i e s  h ighe r  than u0, so tha t  
t h e i r  mot ion  wi l l  b e  a c c e l e r a t e d  by an e l e c t r i c  f ie ld 
of  h ighe r  in tens i ty ,  s ince  the  to ta l  c h a r g e  q behind 
t h e m  wi l l  be  g r e a t e r  than the to ta l  c h a r g e  behind the 
p a r t i c l e  examined ;  they  wi l l ,  t h e r e f o r e ,  continue to 
ou td i s t ance  the  p a r t i c l e s  with an in i t i a l  v e l o c i t y  %. 

F o r  the  s a m e  r e a s o n ,  the  p a r t i c l e s  with an in i t i a l  
ve loc i t y  l e s s  than u 0 wi l l  not be able  to o v e r t a k e  the  
p a r t i c l e  examined .  

This  m e a n s  that  behind a p a r t i c l e  with in i t i a l  v e -  
loc i ty  u 0 wi l l  be a cons t an t  n u m b e r  of p a r t i c l e s ,  so 
that  the  e l e c t r i c - f i e l d  i n t ens i ty  to which th i s  p a r t i c l e  
i s  exposed  wi l l  a l so  be a cons tan t .  

The equat ions  of  mot ion  of  the  p a r t i c l e  m a y  be  w r i t -  
t en  in the  fo l lowing fo rm:  

mdu/dt = eE (u0) (E (uo) = ooast). (1.4) 

I n t e g r a t i o n  of the equat ion (1.4) with the  in i t i a l  con-  
d i t ion u = U 0 at  t = 0 y i e ld s  

u=~__E m (Uo) t + u o .  (1.5) 
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Since u = dx/dt ,  the equat ion (1.5) may be in t e -  
gra ted  with the in i t i a l  condi t ion x = 0 at t = 0 

x = ~ E (Uo) t 2 + uot. (1.6) 

We shal l  now d e t e r m i n e  the specif ic  fo rm of the r e -  
la t ion between the quant i ty  E and the in i t ia l  ve loc i ty  of 
th e pa r t i c l e  u 0. 

The n u m b e r  of pa r t i c l e s  s i tua ted  behind a pa r t i c l e  
that  began i ts  mot ion  at the veloci ty  u 0 we shal l  denote 
by m 0. The tota l  charge  of these  p a r t i c l e s  is  then q = 
= era0. Hence,  us ing  the r e l a t i on  (1.3), we may wr i te  

Subst i tu t ing this  e x p r e s s i o n  into (1.6), we obtain 
the equat ion of mot ion  of the p a r t i c l e  

~ g 8 2  ~0  

x = - ~ , -  t: I /o  (a) da + u0t. 
o 

O. s) 

Subst i tu t ing the e x p r e s s i o n  (1.7) for E(u0) in the 
equal i ty  (1.5), we get 

u ~  

4~2 f t (1.9) u -  - -  /o (a) d ~ t  T Uo. 
- -  tJ~ 

o 

The equation (i. 8) yields an implicit dependence of 

u 0 on x and t, hence the relation (i. 9) in combination 
with (I. 8) yields the velocity distribution in the flow, 

i.e., (I. 8) and (I. 9) make it possible to determine u 

as a function of x and t. In combination, (I. 7) and (i. 8) 

make it possible to determine E as a function of x and 

t. 
We shall now calculate the probability density func- 

tion of the particles. 

The number of particles with the initial velocities 

in the range  (uo, u o + ALto) i s  equal  to AN =fo(uOAuo. 
The p a r t i c l e s  with the in i t i a l  ve loci ty  u 0 wil l  be s i tu -  
ated at the m o m e n t  t at the point  

~to 

x = - 2 ~  t'~ /o (u) du + uot . 
o 

P a r t i c l e s  with an in i t i a l  ve loc i ty  u 0 + Au 0 wil l  be at 
t ime  t at the point  

The equations (I. i0) and (I. 8) yield the dependence 

of n on x and t. Thus, we have determined all the mac- 
roscopic dispersion characteristics. From the rela- 

tion (i. 9), it- may be seen that at t = ~o the velocity of 

thegas particles becomes ilffinitely large. The equa- 

tion (I. I0) indicates that at sufficiently large t, the 
particle density has the asymptotic form 

2~,. I " 

which is  independent  of the ve loc i ty  d i s t r ibu t ion  of the 
p a r t i c l e s  at the ini t ia l  m o m e n t  of t ime .  

It should be noted that this  asympto t ic  exp re s s ion  
for  the dens i ty  is  i n c o r r e c t  only in the case  of a smal l  
number of particles with initial velocities in the prox- 

imity of the point u 0 = co, because f0(~o) = 0, so that in 

the expression (I. i0) the first term in the denominator 
becomes larger than the second. The asymptotic form, 

therefore, cannot be extended up to the point x = ~o for 

finite values of t. The asymptotic representation of the 

velocity has the form u = 2x/t. 

As distinct from the dispersion of charged parti- 
cles, the asymptotic form of the collisionless disper- 

sion of neutral particles is defined by the form of the 
initial distribution function, so that the particle den- 
sity decreases with time according to the ]/t law [I, 2]. 

It should be noted that the qualitative picture of the 

problem is obvious enough even without these quanti- 

tative considerations. Particles of like charge are re- 

pulsed, experiencing at the same time a constant ac- 

celeration, as a result of which the density decreases 
according to n ~ I/t 2. 

w We shall now examine the relation between the 

problem of particle dispersion from a point, which we 

have just considered, and the problem of the dispersion 
of a layer of charged gas particles. The expression for 

the distribution function f has the form 

' DZ ' l /z 

2kTo ] ' 

where T O is the temperature of the gas layer, and ~ is 
the electric potential determined from the equation 

0 x=0) d2,dz~ q- 4~sn0 exp ( -- /~'To / 

The gas is assumed to be hot, i.e., the potential 

energy/acquired along the path length s is postulated 
small compared to kT 0. This condition may be written 
in the form 

o 

Correspondingly, AN particles will occupy the inter- 

cept Ax = x i - x. Hence, the density of the number of 

particles n at the point x at time t may be calculated 

as the limit ratio of AN to Ax for AU 0 tending to zero 

n---: lira A:V- 1o (uo) 
~,..,:, ~ z  = - 2 : ~ m - 1 / o  (uo) t '~ + t �9 ( 1 .  lO) 

eEs 4neqs 
7~o ~i or ~ i  (2.1) 

The dispersion of a cold layer of charged gas (T O = 
= 0) was examined in [3] on the assumption that there 

is no thermal-velocity distribution of particles in the 

gas layer. 

Let the mean free path in the gas be greater than 

the dimensions of the s layer. 

Then, after instantaneous removal of the bounding 

surfaces, the gas will disperse in a collisionless mode 
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under the effect of a self-consistent  electric field. The 
condition (2.1) means that during the initial phase of 
dispersion, the electr ic field does not yet substantially 
affect particle motion, so that the velocity dis t r ibut ion 
of the part icles will be the same as in the case of col-  
l isionless dispersion of neutral part icles.  Subsequent- 
ly, part icle motion will be appreciably influenced by 
the electr ic  field; however, the order  in which they 
follow one another will not change. 

At a sufficiently large distance from the origin of 
coordinates (Ixl > s), the dispersion of the layer  will 
occur  in the same fashion as the dispersion from a 
point; here, the velocity distribution function of the 
gas part icles at the point x = 0 should be taken in the 
form f = f0(u)6(x), where 

+t[~s 
/ m \ ' / ,  / , n ( 2 r  

/o (u) no k2n--~-~0) exp t - -  ~ )  ~ "  - -  
,J _ l / i ,  s 

-~ N o  \2nkTo  I exp (p 2kTo ] " 

Here, No is the number of part icles in a gas layer of 
thickness s. The macroscopic character is t ics  of the 
flow may be calculated from the expressions (1.8), 
(1, 9), and (1.10). 
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